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Contact-electro-catalysis for the degradation of
organic pollutants using pristine dielectric powders
Ziming Wang1,2,6, Andy Berbille 1,2,3,6, Yawei Feng1,2, Site Li4, Laipan Zhu 1,2, Wei Tang 1,2✉ &

Zhong Lin Wang 1,2,5✉

Mechanochemistry has been studied for some time, but research on the reactivity of charges

exchanged by contact-electrification (CE) during mechanical stimulation remains scarce.

Here, we demonstrate that electrons transferred during the CE between pristine dielectric

powders and water can be utilized to directly catalyze reactions without the use of con-

ventional catalysts. Specifically, frequent CE at Fluorinated Ethylene Propylene (FEP) - water

interface induces electron-exchanges, thus forming reactive oxygen species for the degra-

dation of an aqueous methyl orange solution. Contact-electro-catalysis, by conjunction of CE,

mechanochemistry and catalysis, has been proposed as a general mechanism, which has

been demonstrated to be effective for various dielectric materials, such as Teflon, Nylon-6,6

and rubber. This original catalytic principle not only expands the range of catalytic materials,

but also enables us to envisage catalytic processes through mechano-induced contact-

electrification.
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Mechanochemistry was regarded as one of the ten
changing world technologies by IUPAC,1 which gen-
erally relies on the increase of defects,2–4 local extreme

conditions,5–7 or force-induced effects8–10 under external
mechanical agitations to facilitate reactions. However, little
attention has been paid to the potential contribution made by
the contact electrification effect between liquid and solid, despite
the frequent contacts and separations occurring during
mechanochemical processes. Previous researches have demon-
strated that organic pollutants can be degraded by magnetic
stirring with piezoelectric materials, which is referred to as
tribocatalysis.11–13 However, the utilization of piezoelectric
materials in these studies actually makes the interpretation of
the underlying mechanism ambiguous because of the presence
of both piezoelectric and triboelectric effects. For example, the
degradation mechanism by the same method has also been
described as hydromechanics-induced piezocatalysis (Supple-
mentary Table 1).14–16 To unambiguously understand the
mechanism for general materials, solid evidence regarding the
contributions made specifically by contact electrification to the
chemical reactions are required. Pristine polymers represent an
ideal choice for this purpose. Unlike conventional catalysts, such
as metals,17,18 zeolites,19,20 semiconductors,21,22 and piezo-
electric materials,23,24 pristine polymers, due to their stable
electronic structures, have rarely been considered as suitable
materials for catalysis (Supplementary Table 2). Recently, it has
been demonstrated that dielectric materials can withdraw elec-
trons from DI water during the contact electrification process,
and intensive efforts have been directed towards the mechanism
and application of liquid-solid CE in the meantime.25–28 Elec-
trons were proved to contribute and in a majority of cases
dominate the charge transfer process during CE at the water-
dielectric interface,29 which implies that promoting reaction rate
by CE should be possible.

Here, we first demonstrated that electrons exchanged during
CE at the interface of water and dielectric powder could be uti-
lized in chemical reactions, through a process called contact-
electro-catalysis (CEC). The mechanism of CEC proposes that
frequent contact-separation cycles at the surface of dielectric
powder are induced by the growth and collapse of cavitation
bubbles during mechano-stimulation,30 and electrons exchanged
during such CE process could be transferred to different sub-
strates to form reactive oxygen species (ROS). These CEC-yielded
ROS in an aqueous solution can then react with refractory
organic compounds in advanced oxidation processes (AOPs).
The present study mainly focused on the degradation of a 5-ppm
aqueous methyl orange (MO) solution in presence of 20 mg
of Fluorinated ethylene propylene (FEP) powder. Liquid-
chromatography mass-spectroscopy (LC-MS) results revealed
that MO was completely degraded after 180 min of ultrasonica-
tion (40 kHz, 120W). Ex-situ morphological and spectroscopic
characterizations confirmed that both the physical and chemical
properties of FEP powder remained unchanged after degradation.
Besides, the electron paramagnetic resonance (EPR) verified the
evolution of hydroxyl and superoxide radicals. DFT simulations
have also been conducted to evaluate the energy barrier of elec-
tron exchange between FEP and water/O2 in such conditions.
Contact-electro-catalysis (CEC), the catalysis of chemical reac-
tions by CE driven electron exchange, standing at the frontier of
mechanochemistry, CE, and catalysis, represents an innovative
strategy for yielding ROS and dealing with refractory organic
pollutants. A novel wastewater treatment system has been pro-
posed on the basis of CEC principle due to its merits of scalability
and recyclability, and we expect more promising reactive systems
involving radical species could be established in the future,
opening a new field for catalysis.

Results
Investigations on the degradation of methyl orange. Figure 1
presents the systematic investigation conducted on the degrada-
tion of MO. Our experiment design is illustrated in Fig. 1a. 20 mg
of FEP powder were added to a 50 mL aqueous solution of MO (5
ppm), and then stirred for 48 h to improve the contact between
FEP and water. Thereafter, the as-prepared suspension was
ultrasonicated at a frequency of 40 kHz and a power of 120W.
The original light-yellow solution becomes transparent after 3 h,
as shown by inserted photos and Supplementary Movie 1.
Ultrasonication is employed here for generating cavitation bub-
bles capable of inducing contact-separation cycles. The existence
of contact electrification at the water-FEP interface is supported
by the electrical output of a single electrode triboelectric nano-
generator (SE-TENG) that is repeatedly immersed in DI water
(Fig. 1b). The magnitude of transferred charges for one single
contact-separation cycle between water and FEP film increased
from 8.05 nC to saturation at 10.47 nC, suggesting charges are
induced and accumulated on the FEP surface during contact with
DI water. The configuration of the entire setup is depicted in
Supplementary Fig. 1. To investigate the discoloration process,
aliquots (2 mL) were sampled at specific intervals and analyzed by
UV-Vis spectroscopy. Corresponding optical photos and UV-Vis
results are exhibited in Fig. 1c, d respectively. The characteristic
absorbance peak of MO decreased as the ultrasonication time
increased, and approached zero after 120 min. A control experi-
ment has been conducted under the same condition except for the
absence of FEP powder. However, no apparent diminution of
absorbance was observed in this case, suggesting that the presence
of FEP powder is a prerequisite to initiate the degradation pro-
cess, see Fig. 1e. Afterward, liquid-chromatography mass-spec-
troscopy (LC-MS) was employed to identify the degradation
products. Figure 1f depicts the chromatograms of a 5-ppm MO
solution at different degradation times, and all peaks are labeled
with corresponding mass-to-charge ratios (m/z). The major peak
at a retention time of 8.61 min, with an m/z of 304, corresponds
to MO. Its intensity diminished along with the formation of other
peaks, and all peaks disappeared after 180 min. Detailed analysis
of the mass spectra (Supplementary Fig. 2) revealed that these
peaks correspond to oxidative degradation products of MO,
confirming the contribution from chemical reactions to the
degradation. Although FEP is inert to a majority of chemicals, the
surface charge density of FEP could reach around 50 μC/m2 after
contact with water,28 and these charges are capable of con-
tributing to chemical reactions.31–33 Therefore, various dielectric
powders exhibiting different CE abilities, Polytetrafluoroethylene
(PTFE), Polyvinylidene fluoride (PVDF), Nylon-66 (N6), and
nitrile butadiene rubber (NBR) were employed here to investigate
the relationship between degradation rate and CE properties
(Supplementary Fig. 3). Differences in degradation rates are
aligned with discrepancies in CE performances for particles that
are negatively charged upon contacting water. FEP, exhibiting the
highest surface charge density after contacting with water, is the
best performer followed by PTFE and PVDF. It is noteworthy
that positively charged particles, such as NBR and N6, show an
overall lower rate of degradation than negative ones, and they all
exhibit apparent coloration after degradation (Supplementary
Fig. 4). This coloration is a consequence of adsorbing of MO at
the surface, which can be ascribed to electrostatic attractions
between the substrate and charged powder. For instance, MO, an
anionic species, can be electrostatically adsorbed on the surface of
these positively charged powders. This aggregation is unfavorable
to degradation since the direct contact between water and these
particles is hindered by accumulated MO, which is consistent
with the divergence of degradation rate between positively and
negatively charged powder. Degradation products of MO by these
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powders were also analyzed by LC-MS and available in Supple-
mentary Fig. 5. The outperformance of FEP particles for the
degradation of MO inspired us to further explore the essence
of CEC.

Characterization of the dielectric powders before/after the
reaction. Morphological characterization and element mapping
of FEP particles before and after degradation are reported in
Fig. 2a, b. Neither obvious coloration nor modifications of the
morphology was observed by the naked eye and scanning electron
microscopy (SEM). Besides, the inserted mapping pictures indi-
cate that the composition of FEP remained unchanged. A com-
parison of the particle size distributions before/after the
experiment (Fig. 2c) proves that the FEP particles have neither
aggregated nor decomposed during the experiment. Apart from
morphological characterization, spectroscopic analysis techniques
were also performed to deliver more in-depth information on the
chemical properties of FEP powder. Figure 2d, e present Raman,
and Fourier transform infrared (FTIR) spectroscopy results,
respectively. In Raman spectroscopy, the skeleton vibration pat-
tern of FEP before and after the experiment is identical. The
fingerprint region in FTIR characterization, below 1500 cm−1,
was also stable after the reaction. X-ray photoelectron spectro-
scopy (XPS) has been conducted to analyze the variation of the
chemical state of FEP particles before/after the reaction. The
C1s, F1s, and O1s spectra of the FEP powder are listed in Fig. 2f,
h, respectively. Neither shift in binding energies of original
peaks nor generation of new peaks was observed after degrading
MO, which not only further confirms the chemical stability of
FEP during CEC, but also excludes the possibility of physical
adsorption of MO at FEP surface. These data indicate that
the chemically inert FEP powder act as catalysts for the
degradation of MO. In addition to the study of MO

degradation, investigations on the degradation of Acid Orange-
17 (AO-17) and Rhodamine B (RhB) by FEP particles were also
proceeded. In the case of AO-17, an anionic dye, the observa-
tions were analogous to that of MO (Supplementary Fig. 6).
However, the positive RhB ions were adsorbed on the surface of
FEP after reaction (Supplementary Fig. 7), which is consistent
with the hypothesis that physical adsorption is caused by
electrostatic attraction between charged particles and substrates
exhibiting reverse polarities, thus corroborating the hypothesis
that contact electrification happens during the ultrasonication
in presence of FEP.

Generation of the reactive oxygen species (ROS). In order to
further understand the underlying mechanism, a series of cap-
tures were added separately into the original solution, reaching a
final concentration of 1 mM. The evolution of MO concentration
in presence of these scavengers is displayed in Fig. 3a. The results
indicated that two kinds of radicals, hydroxyl radicals (·OH) and
superoxide radicals (·O2

−), contribute to the degradation of MO.
The hydroxyl radical appeared as the limiting factor as only
39.56% of MO was degraded after 30 min when it was quenched.
The production of reactive radicals was estimated by terephthalic
acid (THA) and a water-soluble tetrazolium salt (WST-1)
experiment. As depicted in the left panel of Fig. 3b, the emission
intensity of THA-OH adduct (425 nm) increased by 14-fold over
reaction time in presence of FEP powder (Supplementary Fig. 8).
Moreover, as depicted in the right panel, the peak of formazan
dye (450 nm) does not appear during the WST test after intro-
ducing superoxide dismutase (SOD). (Supplementary Fig. 9). The
relationship between the concentration of dissolved O2 and the
degradation rate was further explored by constantly bubbling air,
N2, or O2 (Fig. 3c). The fastest degradation was achieved while
bubbling air (87.6%), and the lowest when bubbling N2 (16.5%).
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Fig. 1 Degradation of methyl orange by contact-electro-catalysis. a 3D schematic of the experimental setup and protocol. bMeasured electric output of a
single electrode TENG that is repeatedly immersed in DI water. c Photographs of MO aqueous solution samples from 0 to 180min. d UV-Vis spectra of a
50mL aqueous methyl orange (MO) solution during ultrasonication in presence of FEP powder (20mg) for 3 h. e Comparison of absorbance of MO
solution between situations of with/without FEP powder. f Mass spectra of the MO solution after separation by liquid-chromatography. Error bars
represent standard deviation based on three replicate data.
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It is noteworthy that saturating the solution with O2 also hin-
dered the degradation, with the removal of 65.5%. This is mainly
attributed to the fact that oxidative atmospheres are detrimental
to the contact electrification properties of materials, thus less
electrons were induced and transferred during CEC.34 Electron
paramagnetic resonance spectroscopy (EPR) was also carried out
to confirm the production of ·O2

- and ·OH radicals. Two proto-
cols were employed here: a 100 mM DMPO solution, as well as a
solution containing both 100 mM DMPO and 1mM ter-butanol.
Ter-butanol was utilized to quench ·OH radicals, enhancing the
opportunities for superoxide radicals to react with DMPO, as
illustrated by Fig. 3d. No visible peak was measured during
ultrasonication without FEP powder, as depicted by the top sec-
tion of Fig. 3e. In contrast, the curve on the white background
infers that quadruplet DMPO-·OH characteristic peaks were

yielded when ultrasonication was applied in presence of FEP
particles. (Supplementary Fig. 10) And sextuplet DMPO-·OOH
peaks were not detected until introducing 1 mM ter-butanol (blue
background). The final profile was a superposition of both
quadruplet DMPO-·OH peaks and sextuplet DMPO-·OOH peaks,
labeled by red stars and orange triangles respectively. The entire
profile is dominated by a quadruplet DMPO-·OH peak, which
can be ascribed to the fact that hydroxyl radicals are more prone
to react with DMPO and that the hydroxyl adduct is more stable
than that of superoxide radicals.35 Simulated ESR spectra of
individual hydroxyl and superoxide radicals, as well as their
superposition with respective weights of 70 and 30%, are dis-
played in Fig. 3f. Raw code for simulation is listed in Supple-
mentary Note 1. The calculated EPR spectra are consistent with
acquired data in Fig. 3e, and divergences between them are

Fig. 2 Characterization of FEP powder before and after contact-electro-catalysis. a Morphological characterization and energy dispersive X-ray (EDX)
analysis of the FEP powder before reaction, as well as b, after the reaction. c Particle size distribution of FEP powder. d Raman spectra before (orange) and
after (blue) the reaction. e Fourier Transform Infrared (FTIR) spectra before (orange) and after (blue) the reaction. f C1s g F1s, and h O1s XPS spectra of FEP
powder before and after the reaction.
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mainly due to the nonequilibrium status during the measure-
ment. (Supplementary Fig. 11)

Mechanism of contact-electro-catalysis. Contact-electro-
catalysis (CEC) was proposed as the mechanism for degrading
MO in presence of FEP particles. The propagation of ultrasonic
waves in solution provokes the formation of cavitation bubbles
(CB). The collapse of cavitation bubbles is assumed to induce
frequent contact electrification at the FEP-water interface, from
which arises electron exchanges. The step-by-step illustrations are
exhibited in Fig. 4a. A nucleus of CB is firstly formed during
ultrasonication. Thereafter, the CB, containing dissolved gas,
grows from the nucleus until reaching a critical size. At this point,
the collapse of the CB creates a high-pressure microjet that chases
the previously adsorbed water molecules on the FEP surface. An
electron is transferred from water to FEP upon contact, and the
notation of FEP* is proposed to describe the charged state of FEP
after separation from water. In the meantime, the enclosed O2 is
released and grabs the electron from the charged surface of FEP*
once they collide. FEP* retrieves its initial uncharged state after
exchanging this electron to O2, and this cycle repeats itself as long
as the emission of ultrasonic waves is sustained. The energy
barriers for realizing these electron exchanges processes were
assessed by Density Functional Theory (DFT). The specific cal-
culation method is available in Supplementary Note 2. Con-
sidering CE is sensitive to external conditions, the high-pressure
environment resulting from the collapse of the CB was also taken
into consideration. In cases of water/FEP and FEP*/O2,

calculations presented in Fig. 4b reveal the energy barriers for
electron transferring in these two scenarios decreased by 18.8%
and 23.3% respectively. Therefore, the formation and collapse of
CBs could not only induce contact-separation cycles but also
facilitate electron transfers during CE. Figure 4c wraps up and
illustrates the potential mechanism for degrading organic pollu-
tants by CEC. On the one hand, single electron transfer (SET)
between water and FEP during CE results in the formation of
water radical cations. Thus generated water radical cations
undergo a rapid proton transfer from water, forming hydronium
cations and hydroxyl radicals36. On the other hand, electrons
accumulated at FEP* surface are captured by O2, forming ·O2

−

radicals. Then, ·O2
− are protonated into hydroperoxyl (HO2

·),37

leading to the formation of hydroxyl radicals by a chain reaction.
Hydroxyl radicals generated at the end of both steps then react
with organic pollutants in an aqueous solution.

Scalability and recyclability of the contact-electro-catalysts. No
obvious diminution in the performances for the degradation of
MO has been observed after recycling the FEP powder 5 times,
as seen in Fig. 5a. Besides, this catalytic strategy can also be
scaled up as exhibited in Fig. 5b. A slight decrease in kinetic
constants for larger beakers is mainly due to the mismatch
between ultrasonication power and the volume of solutions.
Moreover, owing to the CE phenomenon’s ubiquitous existence,
a broad range of materials could be utilized to degrade organic
pollutants based on CEC, and these materials are generally
commercially available and inexpensive polymers. A compact
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architecture was devised for the cost-effective treatment of
organic wastewater on the basis of the contact-electro-catalysis
principle, as demonstrated in Fig. 5c. And we expect this
attractive strategy to be a promising candidate for applications
in chemical engineering, biological research, and fields that are
closely related to ROS.

Discussion
A unique catalytic principle, contact-electro-catalysis (CEC), was
first proposed and systematically investigated, which employs
surface polarized electrons induced by contact electrification to
accelerate chemical reactions. Ultrasonication-induced cavitation
bubbles could not only generate the contact-separation cycles but
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also facilitate electron transfer by decreasing energy barriers for
various active species generation. Our results indicated a 50 mL
5-ppm MO aqueous solution was completely degraded after 3 h of
ultrasonication in presence of 20 mg of pristine FEP powder. And
this catalytic efficiency could be further enhanced by introducing
micro-nano structures on dielectric powder to increase the con-
tact surface area or by chemical modifications as a mean to
improve the surface charge density. As a ubiquitous phenomenon
among various interfaces, contact electrification endows its
derived contact-electro-catalysis with the power to greatly enrich
the category of catalytic mechanisms and broaden the range of
materials to be regarded as catalysts.

Methods
Chemical reagents. Methyl orange [C14H14N3NaO3S, Macklin, 98%], acid orange-
17 [C18H15N2NaO4S, Macklin], rhodamine B [C28H31ClN2O3, Macklin, 99%],
p-benzoquinone [C6H4O2, Macklin 99.5%], p-phthalic acid [C8H6O4, Macklin,
99%], sodium phosphate tribasic dodecahydrate [Na3PO4, Aladdin, 99.99%],
ethylenediaminetetraacetic acid disodium salt dihydrate [C10H14N2Na2O8·2H2O,
Aladdin, 99%], tert-butanol [C4H10O, Sinopharm Chemical Reagent Co., Ltd,
98.0%], silver nitrate [AgNO3, 99.8%, Sinopharm Chemical Reagent Co., Ltd], 5,5-
dimethyl-1-pyrroline N-oxide [C2H6OS, Dojindo], WST assay Kit S311 [Dojindo],
superoxide dismutase from bovine [S5395-30KU, Sigma-Aldrich], potassium
bomide [KBr, 99.997%, Aladdin], fluorinated ethylene propylene (FEP) [Dupont],
polytetrafluoroethylene (PTFE) [Dupont], polyvinylidene fluoride (PVDF)
[(C2H2F2)n, SOLVAY], nylon-6,6 [(C12H22N2O2)n, Dupont], nitrile butadiene
rubber (NBR) [Kumho], and AlN from Macklin.

Sample preparation. A 5-ppm aqueous methyl orange solution was prepared by
adding 5 mg of C14H14N3NaO3S in 1 L of ultrapure water, followed by magnetic
stirring for 1 h.

About 20 mg of polymer powder were added into a beaker containing 50 mL of
the as-prepared methyl orange solution, and then magnetically stirred at 1000 rpm
for 48 h. The solution containing MO and the powder was ultrasonicated (40 kHz,
120W) using an ultrasonic bath (Yumeng, YM020S). Aliquots were sampled at 0,
5, 10, 15, 30, 60, 120, 180 min. The temperature in the ultrasonic bath was
regulated.

The solution of terephthalic acid was prepared by adding 332.4 mg of p-phthalic
acid and 760 mg of sodium phosphate tribasic dodecahydrate.

The WST-1 solution was prepared by diluting 1 ml of WST-1 solution from a
DOJINDO assay kit, into 19 mL of buffer solution and adding 30 mL of
ultrapure water.

The powders after reactions were separated from the solution using a vacuum
filtration system. The filtered powders were then dried in an oven at 40 degrees
overnight before analysis.

FTIR samples were prepared by grinding 0.5 mg of polymer powders with
100 mg of KBr and then pressing them into a pellet.

Samples for EPR analysis were prepared by stirring 50 mL of ultrapure water
and 20 mg FEP powders for 48 h at 1000 rpm. About 0.5 mL of DMPO was
transferred to the solution and stirred for 5 min at 500 RPM prior to
ultrasonication.

The MO solution for the scalability assessment was prepared as described
above. The quantity of FEP powder was added proportionally to the volume of the
solution treated. For instance, to treat a solution of 200 mL, 80 mg of FEP powder
were added.

Sample characterization. The UV-Vis absorbance of the aliquots was measured
using a Shimadzu UV-3600 UV-Visible spectrometer on a range of 250–650 nm.
The samples were placed into a Hellma Analytics QS High precision cell (Art. No.
104-10-40), with a light path of 10 mm.

The emission spectra of THA-OH were measured on an Edinburgh Instruments
FLS 980, using λexcitation= 225 nm and λemission= 425 nm.

The Scanning electron microscopy (SEM) images of the samples were obtained
using an FEI Nova 450.

The Energy Dispersive X-Ray analysis (EDX) were conducted on FEI Nova 450
equipped with an AMETEK Octane Super appendix.

The X-ray photoelectron spectroscopy measurements have been conducted on a
Thermo Fisher Scientific K-Alpha, in a vacuum of 1 × 10−9 mBar, using an Alka
ray source (hv= 1486.6 eV), the working voltage is 15 kV and the filament current
is 10 mA. The signal accumulation was performed for five to ten cycles. The pass
energy is set at 30 eV.

The LC-MS analysis were conducted using a Thermo Scientific Q Exactive
Orbitrap Quadrupole-Electrostatic Field Orbitrap High-Resolution Tandem Mass
Spectrometer. The HESI ion source of the mass spectrometer was set at −3.0 kV, in
positive ion mode. The mass spectrometry scanner was set on the full scan range of
100–1000 m/z. The resolution of the instrument is 70000 FMHM. The column
used was a Hypersil Gold C18 (2.1 × 100 mm, 1.9 μm), the column temperature is
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Fig. 5 Recyclability of contact-electro-catalysts. a Evolution of degradation from one to five cycles of reaction. b Investigations on the degradation rate for
different volume MO solutions. c Expected large application of contact-electro-catalysis for the treatment of organic wastewater.
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set at 40 °C. The injection volume is 5 μL. Mobile phase A is composed of 0.1%
formic acid aqueous solution, and mobile phase B is an acetonitrile solution.

The Raman spectroscopy analysis was conducted on a LabRam HR evolution
(HORIBA, SAS France), using a range from 300 to 1400 cm−1.

FTIR analysis were conducted on a Bruker Vertex 80 v on a range from 400 to
3000 cm−1.

Electron paramagnetic resonance were recorded on a Bruker EMX plus-9.5/12/
P/L. The measurements were conducted in X-Band (9.830243 GHz), with
amplitude modulation of 1 G, microwave power of 2 mW, and an amplitude
modulation frequency of 100 kHz and conversion time of 60 ms, and a time
constant at 40.96 ms. The assignment of the components of the spectra was based
on literature and simulation using Easyspin. The code used for the simulation of
the spectra is presented in Supplementary Note 1.

Data availability
The data supporting the findings of this study are reported in the main text or
the Supplementary Information. Raw data can be obtained from the corresponding
authors upon reasonable request.
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